Укажите номера верных утверждений.
1) Существует прямоугольник, который не является параллелограммом.
2) Треугольник с углами 40° , 70°, 70° — равнобедренный.
3) Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны.
Рассмотрим каждое утверждение:
1) "Существует прямоугольник, который не является параллелограммом", это утверждение неверно, т.к. любой
прямоугольник полностью удовлетворяет
определению параллелограмма.
2) "Треугольник с углами 40° , 70°, 70° — равнобедренный", это утверждение верно, по
свойству
равнобедренного треугольника.
3) "Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны". MA и MB -
касательные, тогда, по второму свойству касательной, это утверждение верно.
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 60, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 6 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Человек, рост которого равен 1,8 м, стоит на расстоянии 16 м от уличного фонаря. При этом длина тени человека равна 9 м. Определите высоту фонаря (в метрах).
В трапеции АВСD боковые стороны AB и CD равны, CH — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 12, а меньшее основание BC равно 4.
На клетчатой бумаге отмечены точки A, B и C. Площадь одной клетки равна 1. Найдите расстояние от точки A до середины отрезка BC.
Комментарии: