ОГЭ, Математика. Геометрия: Задача №565175 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №565175

Задача №351 из 1087
Условие задачи:

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 62°. Найдите величину угла OMK. Ответ дайте в градусах.

Решение задачи:

OK перпендикулярен к касательной (по свойству касательной), т.е. угол между OK и касательной равен 90°.
Следовательно, /OKM=90°-62°=28°
Треугольник OMK - равнобедренный (т.к. OM и OK - радиусы окружности и, соответственно, равны друг другу).
По свойству равнобедренного треугольника /OKM=/OMK=28°
Ответ: /OMK=28°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0C7DF1

В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.



Задача №038E4A

Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника.



Задача №01D112

Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 36.



Задача №A1451C

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=44, MN=24. Площадь треугольника ABC равна 121. Найдите площадь треугольника MBN.



Задача №7CA3AC

Площадь круга равна 88. Найдите площадь сектора этого круга, центральный угол которого равен 45°.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства равнобедренного треугольника:
1) Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Иными словами - в равнобедренном треугольнике углы при основании равны.

2) Биссектрисы, медианы и высоты, проведённые из этих углов, равны.
3) Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика