Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АС, если сторона АВ равна 4.
AD для треугольника ABM является и
медианой, и высотой. А это
свойство медианы для равнобедренного треугольника. Следовательно, треугольник ABM -
равнобедренный с основанием BM.
По
определению равнобедренного треугольника AB=AM.
Т.к. BM - медиана для треугольника ABC, следовательно AM=MC (по
определению медианы).
Тогда AC=AM*2. Как мы выяснили ранее AM=AB => AC=AB*2=4*2=8.
Ответ: AC=8.
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь параллелограмма, изображённого на рисунке.
В треугольнике ABC угол C равен 150°, AB=4. Найдите радиус окружности, описанной около этого треугольника.
В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.
Косинус острого угла А треугольника равен
. Найдите sinA.
В трапеции ABCD известно, что AD=4, BC=2, а её площадь равна 69. Найдите площадь треугольника ABC.

Комментарии: