Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали любого прямоугольника делят его на 4 равных треугольника.
3) Для точки, лежащей внутри круга, расстояние до центра круга меньше его радиуса.
Рассмотрим каждое утверждение:
1) "
Медиана
равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию", это утверждение верно, т.к. это
свойство
равнобедренного треугольника.
2) "Диагонали любого прямоугольника делят его на 4 равных треугольника", это утверждение неверно, т.к. у равных треугольников равны все стороны, а одна из сторон треугольников совпадает с одной из стороной прямоугольника. А соседние стороны прямоугольника могут быть не равны друг другу, тогда и стороны треугольников будут не равны, а значит и неравны сами треугольники.
3) "Для точки, лежащей внутри круга, расстояние до центра круга меньше его радиуса", это утверждение верно, это становится очевидным, если провести радиус через эту точку.
Поделитесь решением
Присоединяйтесь к нам...
Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что AB⊥IJ.
Стороны AC, AB, BC треугольника ABC равны 2√
Радиус вписанной в квадрат окружности равен 24√2. Найдите радиус окружности, описанной около этого квадрата.
Лестница соединяет точки A и B и состоит из 20 ступеней. Высота каждой ступени равна 16,5 см, а длина – 28 см. Найдите расстояние между точками A и B (в метрах).
Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=6, AC=24.
Комментарии: