Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали любого прямоугольника делят его на 4 равных треугольника.
3) Для точки, лежащей внутри круга, расстояние до центра круга меньше его радиуса.
Рассмотрим каждое утверждение:
1) "
Медиана
равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию", это утверждение верно, т.к. это
свойство
равнобедренного треугольника.
2) "Диагонали любого прямоугольника делят его на 4 равных треугольника", это утверждение неверно, т.к. у равных треугольников равны все стороны, а одна из сторон треугольников совпадает с одной из стороной прямоугольника. А соседние стороны прямоугольника могут быть не равны друг другу, тогда и стороны треугольников будут не равны, а значит и неравны сами треугольники.
3) "Для точки, лежащей внутри круга, расстояние до центра круга меньше его радиуса", это утверждение верно, это становится очевидным, если провести радиус через эту точку.
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=24, AC=21, MN=14. Найдите AM.
Периметр треугольника равен 50, одна из сторон равна 20,
а радиус вписанной в него окружности равен 4. Найдите площадь этого треугольника.
На стороне AC треугольника ABC отмечена точка D так, что AD=2, DC=13. Площадь треугольника ABC равна 75. Найдите площадь треугольника ABD.
Найдите больший угол равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной AB углы, равные 46° и 1° соответственно. Ответ дайте в градусах.
В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 17:15, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.
Комментарии: