ОГЭ, Математика. Геометрия: Задача №AEC5CC | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №AEC5CC

Задача №186 из 1087
Условие задачи:

Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части". По свойству равнобедренного треугольника, такая биссектриса является медианой. А медиана, по определению, делит сторону пополам. Следовательно, это утверждение верно.
2) "В любом прямоугольнике диагонали взаимно перпендикулярны", это утверждение неверно. Нет такого свойства.
3) "Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу", это утверждение верно, по определению.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0D90BE

Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 38°, 78° и 64°.



Задача №764DFB

Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные 30° и 40° соответственно.



Задача №9EF990

Четырёхугольник ABCD описан около окружности, AB=9, BC=13, CD=18. Найдите AD.



Задача №03D0F6

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 39 и 42, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.



Задача №56179A

Стороны AC, AB, BC треугольника ABC равны 23, 7 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.

Комментарии:


(2017-04-30 22:07:28) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-04-27 13:09:48) : Число кустов сирени в парке относится к числу кустов жасмина как 17 к 33 сколько процентов кустов парке составляет кусты сирени

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства равнобедренного треугольника:
1) Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Иными словами - в равнобедренном треугольнике углы при основании равны.

2) Биссектрисы, медианы и высоты, проведённые из этих углов, равны.
3) Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика