Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 150°, а CD=33.
Дочертим отрезки как показано на рисунке.
DE=AF, т.к. это
высоты
трапеции.
∠DCE=180°-∠BCD=180°-150°=30° (т.к. это
смежные углы).
sin(∠DCE)=ED/CD (по
определению)
sin30°=ED/CD (sin30°=1/2 по
таблице)
1/2=ED/33
ED=33*1/2=16,5
sin(∠ABF)=AF/AB (по
определению)
sin60°=ED/AB
AB=ED/sin60° (sin60°=√3/2 по
таблице)
Ответ: 11√3
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=52 и CH=13. Найдите cosB.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.
Найдите площадь трапеции, изображённой на рисунке.
В выпуклом четырёхугольнике ABCD углы BCA и BDA равны. Докажите, что углы ABD и ACD также равны.
Какое наибольшее число коробок в форме прямоугольного параллелепипеда размером 30x50x90 (см) можно поместить в кузов машины размером 2,4x3x2,7 (м)?
α | sinα | cosα | tgα | ctgα |
0° | 0 | 1 | 0 | --- |
30° | 1/2 | √ |
√ |
√ |
45° | √ |
√ |
1 | 1 |
60° | √ |
1/2 | √ |
√ |
90° | 1 | 0 | --- | 0 |
120° | √ |
-1/2 | -√ |
0 |
135° | √ |
-√ |
-1 | -1 |
150° | 1/2 | -√ |
-√ |
-√ |
180° | 0 | -1 | 0 | --- |
210° | -1/2 | -√ |
√ |
√ |
225° | -√ |
-√ |
1 | 1 |
240° | -√ |
-1/2 | √ |
√ |
270° | -1 | 0 | --- | 0 |
300° | -√ |
1/2 | -√ |
-√ |
315° | -√ |
√ |
-1 | -1 |
330° | -1/2 | √ |
-√ |
-√ |
360° | 1 | 0 | 0 | --- |
Комментарии: