Площадь прямоугольного треугольника равна 2√
Площадь
прямоугольного треугольника равна половине произведения катетов:
S=AC*BC/2
Пусть 30-и градусам равен угол BAC.
Тангенс BAC:
td∠BAC=tg30°=BC/AC=√
BC=AC√
S=AC*(AC√
AC2/2=2
AC2=4
AC=2
Ответ: 2
Поделитесь решением
Присоединяйтесь к нам...
Найдите больший угол равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной AB углы, равные 46° и 35° соответственно. Ответ дайте в градусах.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=11, CK=20.
Какие из следующих утверждений верны?
1) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
2) Площадь трапеции равна произведению основания трапеции на высоту.
3) Треугольника со сторонами 1, 2, 4 не существует.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Найдите площадь треугольника, изображённого на рисунке.
Четырёхугольник ABCD вписан в окружность. Угол ABC равен 70°, угол CAD равен 49°. Найдите угол ABD. Ответ дайте в градусах.
| α | sinα | cosα | tgα | ctgα |
| 0° | 0 | 1 | 0 | --- |
| 30° | 1/2 | √ |
√ |
√ |
| 45° | √ |
√ |
1 | 1 |
| 60° | √ |
1/2 | √ |
√ |
| 90° | 1 | 0 | --- | 0 |
| 120° | √ |
-1/2 | -√ |
0 |
| 135° | √ |
-√ |
-1 | -1 |
| 150° | 1/2 | -√ |
-√ |
-√ |
| 180° | 0 | -1 | 0 | --- |
| 210° | -1/2 | -√ |
√ |
√ |
| 225° | -√ |
-√ |
1 | 1 |
| 240° | -√ |
-1/2 | √ |
√ |
| 270° | -1 | 0 | --- | 0 |
| 300° | -√ |
1/2 | -√ |
-√ |
| 315° | -√ |
√ |
-1 | -1 |
| 330° | -1/2 | √ |
-√ |
-√ |
| 360° | 1 | 0 | 0 | --- |
Комментарии: