Площадь прямоугольного треугольника равна 2√
Площадь
прямоугольного треугольника равна половине произведения катетов:
S=AC*BC/2
Пусть 30-и градусам равен угол BAC.
Тангенс BAC:
td∠BAC=tg30°=BC/AC=√
BC=AC√
S=AC*(AC√
AC2/2=2
AC2=4
AC=2
Ответ: 2
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
2) Смежные углы равны.
3) Медиана равнобедренного треугольника, проведённая к его основанию, является его высотой.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.
Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC=12, BD=20, AB=7. Найдите DO.
Сторона ромба равна 38, а один из углов этого ромба равен 150°. Найдите высоту этого ромба.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=12, BF=5.
| α | sinα | cosα | tgα | ctgα |
| 0° | 0 | 1 | 0 | --- |
| 30° | 1/2 | √ |
√ |
√ |
| 45° | √ |
√ |
1 | 1 |
| 60° | √ |
1/2 | √ |
√ |
| 90° | 1 | 0 | --- | 0 |
| 120° | √ |
-1/2 | -√ |
0 |
| 135° | √ |
-√ |
-1 | -1 |
| 150° | 1/2 | -√ |
-√ |
-√ |
| 180° | 0 | -1 | 0 | --- |
| 210° | -1/2 | -√ |
√ |
√ |
| 225° | -√ |
-√ |
1 | 1 |
| 240° | -√ |
-1/2 | √ |
√ |
| 270° | -1 | 0 | --- | 0 |
| 300° | -√ |
1/2 | -√ |
-√ |
| 315° | -√ |
√ |
-1 | -1 |
| 330° | -1/2 | √ |
-√ |
-√ |
| 360° | 1 | 0 | 0 | --- |
Комментарии: