Найдите угол ABC . Ответ дайте в градусах.
Угол ABC (обозначим его α) является
вписанным в окружность, следовательно, он равен половине центрального угла, опирающегося на ту же дугу 2α (по
теореме).
Найдем
центральный угол через тангенс. Рассмотрим
центральный ("синий") угол и проведенный в нем катет ("красный").
tg(2α)=4/4=1
По
таблице угол 2α=45°
α=45°/2=22,5°
Ответ: 22,5
Поделитесь решением
Присоединяйтесь к нам...
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=12 и MB=18. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Сторона ромба равна 32, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Площадь параллелограмма ABCD равна 28. Точка E — середина стороны AB. Найдите площадь трапеции DAEC.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 75°. Найдите величину угла ODC.
Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 25° и 40° соответственно.
| α | sinα | cosα | tgα | ctgα |
| 0° | 0 | 1 | 0 | --- |
| 30° | 1/2 | √ |
√ |
√ |
| 45° | √ |
√ |
1 | 1 |
| 60° | √ |
1/2 | √ |
√ |
| 90° | 1 | 0 | --- | 0 |
| 120° | √ |
-1/2 | -√ |
0 |
| 135° | √ |
-√ |
-1 | -1 |
| 150° | 1/2 | -√ |
-√ |
-√ |
| 180° | 0 | -1 | 0 | --- |
| 210° | -1/2 | -√ |
√ |
√ |
| 225° | -√ |
-√ |
1 | 1 |
| 240° | -√ |
-1/2 | √ |
√ |
| 270° | -1 | 0 | --- | 0 |
| 300° | -√ |
1/2 | -√ |
-√ |
| 315° | -√ |
√ |
-1 | -1 |
| 330° | -1/2 | √ |
-√ |
-√ |
| 360° | 1 | 0 | 0 | --- |
Комментарии: