Площадь прямоугольного треугольника равна 18√
Обозначим:
a - искомый катет
b - второй катет
c - гипотенуза
sin60°=√
sin60°=a/c=√
c=2a/√
По
теореме Пифагора:
a2+b2=c2
a2+b2=(2a/√
a2+b2=4a2/3
3(a2+b2)=4a2
3a2+3b2=4a2
3b2=a2
b2=a2/3
b=a/√
Из условия:
Sтреугольника=ab/2=18√
a*(a/√
a2/√
a2=√
a2=36(√
a2=36
a=6
Ответ: 6
Поделитесь решением
Присоединяйтесь к нам...
Длина хорды окружности равна 130, а расстояние от центра окружности до этой хорды равно 72. Найдите диаметр окружности.
Прямая, параллельная стороне
AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:4, KM=18.
Найдите площадь квадрата, если его диагональ равна 1.
В параллелограмме ABCD точка K — середина стороны AB. Известно, что KC = KD. Докажите, что данный параллелограмм — прямоугольник.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 6. Найдите площадь трапеции.
Комментарии: