Катеты прямоугольного треугольника равны 8 и 6. Найдите синус наименьшего угла этого треугольника.
Так как треугольник
прямоугольный, то можем применить
теорему Пифагора:
AB2=BC2+AC2
AB2=82+62
AB2=64+36=100
AB=10
Меньший угол лежит напротив меньшей стороны, следовательно
синус меньшего угла будет равен
отношению меньшей стороны к гипотенузе, т.е. 6/10=0,6
Ответ: 0,6
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
Радиус окружности, описанной около равностороннего треугольника, равен 16. Найдите высоту этого треугольника.
Площадь параллелограмма равна 60, а две его стороны равны 4 и 20. Найдите его высоты. В ответе укажите большую высоту.
Человек, рост которого равен 1,6 м, стоит на расстоянии 3 м от уличного фонаря. При этом длина тени человека равна 2 м. Определите высоту фонаря (в метрах).
В окружности с центром в точке О проведены диаметры AD и BC, угол
ABO равен 80°. Найдите величину угла ODC.
Комментарии: