В треугольнике ABC угол C равен 90°, sinA=0,4, AC=√
По
определению: sinA=BC/AB => BC=AB*sinA=AB*0,4=0,4AB
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(0,4AB)2+(√
AB2-(0,4AB)2=21
AB2(1-0,42)=21
AB2*0,84=21
AB2=25
AB=5
Ответ: AB=5
Поделитесь решением
Присоединяйтесь к нам...
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 83°. Найдите величину угла OMK. Ответ дайте в градусах.
Трапеция ABCD с основаниями AD и BC описана около окружности, AB=14, BC=13, CD=22. Найдите AD.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если в ромбе один из углов равен
90°, то такой ромб — квадрат.
В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=20, BC=10. Найдите CM.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.




Комментарии: