В треугольнике ABC угол C равен 90°, sinA=0,4, AC=√
По
определению: sinA=BC/AB => BC=AB*sinA=AB*0,4=0,4AB
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(0,4AB)2+(√
AB2-(0,4AB)2=21
AB2(1-0,42)=21
AB2*0,84=21
AB2=25
AB=5
Ответ: AB=5
Поделитесь решением
Присоединяйтесь к нам...
Площадь круга равна 88. Найдите площадь сектора этого круга, центральный угол которого равен 45°.
В трапецию, сумма длин боковых сторон которой равна 24, вписана окружность. Найдите длину средней линии трапеции.
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 36 и 39.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 60, тангенс угла BAC равен 5/12. Найдите радиус окружности, вписанной в треугольник ABC.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 6. Найдите площадь трапеции.




Комментарии: