Катеты прямоугольного треугольника равны
√
Т.к. треугольник
прямоугольный, мы можем применить
теорему Пифагора:
AB2=BC2+CA2
AB2=(√
AB2=15+1=16
AB=4
Наименьший угол лежит напротив наименьшей стороны (по
теореме о соотношении сторон и углов).
Тогда наименьший угол - /ABC (т.к. 1 < √
sin(/ABC)=AC/AB=1/4=0,25
Ответ: синус наименьшего угла равен 0,25.
Поделитесь решением
Присоединяйтесь к нам...
Четырёхугольник ABCD со сторонами AB=19 и CD=22 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
Высота AH ромба ABCD делит сторону CD на отрезки DH=21 и CH=8. Найдите высоту ромба.
Основания трапеции равны 5 и 40, одна из боковых сторон равна 14, а косинус угла между ней и одним из оснований равен 3/5. Найдите площадь трапеции.
Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равнобедренного треугольника совпадают.
2) Существует параллелограмм, который не является прямоугольником.
3) Сумма углов тупоугольного треугольника равна 180°.
Точка О – центр окружности, /ACB=62° (см. рисунок). Найдите величину угла AOB (в градусах).
Комментарии: