На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.
Вариант №1 (предложил пользователь Полина)
Рассмотрим треугольники ACH и BCH.
Докажем, что это подобные треугольники:
∠AHC=∠BHC=90° (так как CH -
высота).
По
теореме о сумме углов треугольника:
180°=∠CAH+∠AHC+∠HCA
180°=∠CAH+90°+∠HCA
90°=∠CAH+∠HCA
∠CAH=90°-∠HCA
Заметим, что:
∠BCH=90°-∠HCA
Получается, что ∠CAH=∠BCH
Тогда, по первому признаку подобия, данные треугольники подобны, т.е. можем записать пропорцию:
AH/CH=CH/BH
AH*BH=CH2
4*64=CH2
256=CH2
CH=√256=16
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 28 и 100.
В треугольнике ABC угол C равен 90°, AC=12 , tgA=2√
Укажите номера верных утверждений.
1) Существует ромб, который не является квадратом.
2) Если две стороны треугольника равны, то равны и противолежащие им углы.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.
Площадь параллелограмма ABCD равна 5. Точка E – середина стороны AD. Найдите площадь трапеции AECB.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=5, CK=14.
Комментарии:
(2020-05-12 15:27:02) Администратор: Александра, здравствуйте! Тоже хорошее решение, спасибо!
(2020-05-05 06:57:13) Александра: Здравствуйте, есть же еще решение без использования подобия треугольников. Провести медиану из прямого угла BM. Мы знаем, что медиана проведенная из прямого угла равна половине гипотенузы (BM=1/2*AB=34). И можем рассчитать отрезок между высотой и медианой(HM). HM=BH-1/2*AB=64-34=30. И по теореме Пифагора найдем CH^2=BM^2-HM^2=34^2-30^2=256 -> CH=16
(2017-11-13 20:46:51) Администратор: Полина, Ваш вариант проще, поэтому я опубликовал его. Спасибо за подсказку!
(2017-11-10 09:45:48) Полина: А зачем так усложнять? Можно же использовать свойство подобных треугольников. Составить пропорцию и решить в одно действие. CH²=64*4