На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.
Вариант №1 (предложил пользователь Полина)
Рассмотрим треугольники ACH и BCH.
Докажем, что это подобные треугольники:
∠AHC=∠BHC=90° (так как CH -
высота).
По
теореме о сумме углов треугольника:
180°=∠CAH+∠AHC+∠HCA
180°=∠CAH+90°+∠HCA
90°=∠CAH+∠HCA
∠CAH=90°-∠HCA
Заметим, что:
∠BCH=90°-∠HCA
Получается, что ∠CAH=∠BCH
Тогда, по первому признаку подобия, данные треугольники подобны, т.е. можем записать пропорцию:
AH/CH=CH/BH
AH*BH=CH2
4*64=CH2
256=CH2
CH=√256=16
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
Лестницу длиной 3 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 1,8 м?
Дан правильный шестиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится равносторонний треугольник.
Площадь параллелограмма равна 60, а две его стороны равны 4 и 20. Найдите его высоты. В ответе укажите большую высоту.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=8, CK=13.
На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.
Комментарии:
(2020-05-12 15:27:02) Администратор: Александра, здравствуйте! Тоже хорошее решение, спасибо!
(2020-05-05 06:57:13) Александра: Здравствуйте, есть же еще решение без использования подобия треугольников. Провести медиану из прямого угла BM. Мы знаем, что медиана проведенная из прямого угла равна половине гипотенузы (BM=1/2*AB=34). И можем рассчитать отрезок между высотой и медианой(HM). HM=BH-1/2*AB=64-34=30. И по теореме Пифагора найдем CH^2=BM^2-HM^2=34^2-30^2=256 -> CH=16
(2017-11-13 20:46:51) Администратор: Полина, Ваш вариант проще, поэтому я опубликовал его. Спасибо за подсказку!
(2017-11-10 09:45:48) Полина: А зачем так усложнять? Можно же использовать свойство подобных треугольников. Составить пропорцию и решить в одно действие. CH²=64*4