ОГЭ, Математика. Геометрия: Задача №223031 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Так как BM - медиана, значит AM=MC=AC/2=88/2=44
Рассмотрим треугольник MBC.
Т.к. BC=BM (по условию задачи), значит этот треугольник равнобедренный, BH - высота этого треугольника. По третьему свойству равнобедренного треугольника MH=HC=MC/2=44/2=22
Искомая AH=AC-HC=88-22=66
Ответ: AH=66

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FFBC49

Площадь прямоугольного треугольника равна 183/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.



Задача №55503E

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=21, CM=15. Найдите OM.



Задача №151151

В треугольнике ABC проведена биссектриса AL, угол ALC равен 152°, угол ABC равен 137°. Найдите угол ACB. Ответ дайте в градусах.



Задача №279454

Точка O – центр окружности, на которой лежат точки S, T и V таким образом, что OSTV – ромб. Найдите угол OVT. Ответ дайте в градусах.



Задача №6A8458

В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC=ED. Докажите, что данный параллелограмм - прямоугольник.

Комментарии:


(2017-05-07 22:39:31) Администратор: Решите свою задачу аналогично этой.
(2017-05-05 11:08:35) : В треугольнике ABC BM — медиана и BH — высота. Известно, что AC = 97 и BC = BM. Найдите AH.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Медиана треугольника - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.

Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика