ОГЭ, Математика. Геометрия: Задача №345EF5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №345EF5

Задача №658 из 1087
Условие задачи:

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 9 и 11 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=11/6.

Решение задачи:

Вариант №1 (прислал Всеволод).
Проведем отрезок от точки касания стороны AB и окружности через центр окружности к стороне AC. Обозначим точки как показано на рисунке.
AD2=AM*AN (по теореме о касательно и секущей для точки А).
AD2=9*11=99
AD=99=9*11=9*11=311
Рассмотрим треугольник ADE.
Данный треугольник прямоугольный (по свойству касательной).
cos∠BAC=AD/AE (по определению).
AE=AD/cos∠BAC=311/(11/6)=311*6/11=3*6=18

!!!ВАЖНО!!! Если Вы решаете подобную задачу, но с другими числовыми значениями, проверьте, если полученное значение AE меньше значения AN, то данный метод решения не подходит,так как не соответствует рисунку. Переходите к варианту решения №2 (см. ниже)

По теореме Пифагора:
AE2=DE2+AD2
182=DE2+(311)2
324=DE2+9*11
DE2=324-99=225
DE=15
EN*EM=EF*DE (по теореме о двух секущих относительно точки E).
(AE-AN)*(AE-AM)=(DE-2R)*DE
(18-11)(18-9)=(15-2R)*15
7*9=(15-2R)*15 |:3
7*3=(15-2R)*5
21=75-10R
10R=75-21=54
R=5,4
Ответ: 5,4
Вариант №2.
Дополнительно обозначим ключевые точки и проведем отрезки, как показано на рисунке.
По теореме о касательной и секущей найдем AD.
AD2=AM*AN=9*11=99
AD=99
Рассмотрим треугольник ADM.
По теореме косинусов найдем DM:
DM2=AD2+AM2-2*AD*AM*cos∠BAC=(99)2+92-2*99*9*11/6=99+81-18*311*11/6=180-3*3*11=180-99=81
DM=9
Так как DM=AM=9, значит треугольник ADM - равнобедренный.
Следовательно, по свойству равнобедренного треугольника ∠BAM=∠ADM
По четвертому свойству углов, связанных с окружностью ∠ADM равен половине градусной меры дуги DM.
∠DOM - центральный угол, следовательно равен градусной мере дуги DM, т.е. вдвое больше, чем ∠ADM.
Рассмотрим треугольник DOM.
Так как OD=OM=R, то данный треугольник равнобедренный.
Проведем высоту OE, как показано на рисунке.
По свойству равнобедренного треугольника: высота OE является так же и биссектрисой, и медианой.
Следовательно, ∠DOE=∠DOM/2=∠ADM=∠BAC
Получаем, что cos∠DOE=cos∠BAC=11/6
sin∠DOE=1-cos2∠DOE=1-(11/6)2=1-11/36=25/36=5/6 ( основная тригонометрическая формула)
DE=DM/2=9/2=4,5 (т.к. OE - медиана).
sin∠DOE=DE/DO (по определению).
5/6=4,5/DO
DO=4,5/(5/6)=4,5*6/5=5,4=R
Ответ: R=5,4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EEE91E

В трапеции ABCD основания AD и BC равны соответственно 49 и 21, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.



Задача №04E270

Сторона равностороннего треугольника равна 103. Найдите его биссектрису.



Задача №72DA6E

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 17:10, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.



Задача №0DDD96

Площадь прямоугольного треугольника равна 8823. Один из острых углов равен 60°. Найдите длину катета, прилежащего к этому углу.



Задача №00048B

Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.

Комментарии:


(2017-05-03 21:11:28) Администратор: Василина, cos∠DOE=cos∠BAC, так как ∠DOE=∠BAC. В решении это показано.
(2017-05-02 22:31:56) Администратор: Анатолий, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-05-01 12:54:15) анатолий: в основании пирамиды лежит квадрат.одна из боковых граней перпендикулярна ее основанию а две соседние с ней грани образуют с основанием двугранные углы по 30.найти площадь поверхности пирамиды если ее высота равна h
(2017-04-18 14:36:53) Генрих: Пару дней назад все выслал)
(2017-04-13 12:28:20) Генрих: Все красиво перепишу и постараюсь сегодня выслать)
(2017-04-03 12:06:06) Администратор: Генрих, здравствуйте! Присылайте на admin@otvet-gotov.ru, будем очень благодарны!
(2017-04-03 12:04:55) Администратор: Генрих, здравствуйте! Присылайте на admin@otvet-gotov.ru, будем очень благодарны!
(2017-04-03 03:39:16) Генрих: Здравствуйте, хотел бы поделиться другим решением, куда его можно прислать, мне кажется, оно более универсально.
(2016-02-09 00:51:04) Администратор: Ксения, да, Вы правы, я подумаю, над этим вопросом...Спасибо за информацию.
(2016-02-09 00:41:58) Ксения: опечатка в моем комментарии: косинус=(корень из 15, деленный на 4(!)
(2016-02-09 00:37:24) Ксения: Решала аналогичную задачу с другими цифрами (расстояния 12 и 45 соответственно, косинус=(корень из 15, деленный на 2) первым способом. Получилось, что АЕ=24, что противоречит условию, т.к. АЕ должно быть больше, чем 45... Получается, что решение подходит не для всех задач..
(2015-05-26 17:22:14) Денис: моя задача на пробном ОГЭ (ГИА) в этом году.. аж до сих пор её помню)
(2015-05-05 09:53:28) Администратор: Галина, Вы меня запутали ))) Все нормально в этом варианте. Посмотрите свой же комментарий "АЕ=18, при этом по условию AM=9, AN=11, т.е. AN=20", у Вас AN то равняется 11, то 20...По условию AN=11, значит AE больше, чем AN...
(2015-05-05 09:49:56) Администратор: Галина, да, интересное замечание, я как-то даже не обратил внимания...Спасибо, я подумаю над этим вопросом...
(2015-05-05 09:11:30) Галина: Для варианта №1 АЕ=18, при этом по условию AM=9, AN=11, т.е. AN=20. Т.е. вторая часть решения EN*EM=EF*DE теряет смысл.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Медиана треугольника - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.

Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика