Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
BM -
медиана треугольника АВС,
следовательно, она делит этот треугольник на два равных по площади треугольника (
свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM.
SABK+SAKM=SABM=SABC/2
AP -
биссектриса, по
теореме о биссектрисе можно записать AM/AB=KM/BK.
По условию задачи AC втрое больше AB, следовательно, AM в 1,5 раза больше АВ (т.к. является половиной АС)
KM/BK=1,5. Т.к. площадь треугольника вычисляется по формуле S=1/2*h*a, где а-основание и h-высота,
то можем записать:
SAKM=1/2*h*KM=1/2*h*(1,5*BK),
SAKM=1/2*h*(3/2*BK)=3/2*(1/2*h*BK)=3/2*SABK (т.к. высота h для этих треугольников общая)
SABK+SAKM=SABM=SABC/2
SABK+3/2*SABK=SABC/2
5/2*SABK=SABC/2
SABK=SABC/5
По тому же
свойству биссектрисы для треугольника ABC получаем, что AC/AB=CP/PB
AC/AB=3 (по условию задачи), следовательно, CP=3*PB
SAPC=1/2*h*PC=1/2*h*(3*PB)=3*(1/2*h*PB)=3*SABP,
SABP+SAPC=SABC
SABP+3*SABP=SABC
SABP=SABC/4
Далее найдем площадь треугольника BPK:
SBPK=SABP-SABK
Ранее мы нашли, что SABK=SABC/5
SBPK=SABC/4-SABC/5=SABC/20
Найдем площадь четырехугольника KPCM:
SKPCM=SCMB-SBKP
SKPCM=SABC/2-SABC/20, (площадь CMB мы нашли ранее),
SKPCM=9/20*SABC
Отношение площадей ABK к KPCM =(SABC/5)/(9/20*SABC)=4/9
Ответ: отношение площади треугольника ABK к площади четырёхугольника KPCM=4/9.
Поделитесь решением
Присоединяйтесь к нам...
Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 31°. Найдите угол B этой трапеции. Ответ дайте в градусах.
На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что /EAB=45°. Найдите ED.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.
Сторона квадрата равна 3√2. Найдите диагональ этого квадрата.
Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.
Комментарии:
(2015-03-09 16:04:39) Администратор: Виталий, 1+(3/2)=(2/2)+(3/2)=5/2.
(2015-03-06 19:24:21) Виталий: SABK+SAKM=SABM=SABC/2 SABK+3/2*SABK=SABC/2 5/2*SABK=SABC/2 SABK=SABC/5 Почему 52????
(2014-05-29 21:04:23) Администратор: Мария, как повезет )
(2014-05-29 20:00:54) Мария: сложная...неужели она будет на экзамене?