Длина хорды окружности равна 60, а расстояние от центра окружности до этой хорды равно 40. Найдите диаметр окружности.
Обозначим ключевые точки, как показано на рисунке. Проведем отрезок АО.
Рассмотрим треугольник AOB.
Данный треугольник
прямоугольный, так как расстояние ОВ является
высотой (кротчайшее расстояние).
AB равна половине длины
хорды (по
третьему свойству хорды).
Тогда, по
теореме Пифагора:
AO2=OB2+AB2
AO2=402+(60/2)2
AO2=1600+900=2500
AO=50 - это радиус окружности, следовательно, диаметр D=2*AO=100
Ответ: D=100
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике два угла равны 43° и 88°. Найдите его третий угол. Ответ дайте в градусах.
В треугольнике ABC AC=15, BC=5√
Из вершины прямого угла C треугольника
ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и ADB подобны.
Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равностороннего треугольника совпадают.
2) Существует квадрат, который не является ромбом.
3) Сумма углов остроугольного треугольника равна 180°.
Комментарии:
(2017-03-13 00:01:12) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-03-12 22:56:54) \'\'\': радиус вписанной в треугольник ABC окружности равен 4 причём AC=BC.На прямой взята точка D удалённая от прямых АС и ВС на расстоянии 11 и 3 соответственно.НАЙДИТЕ КОСИНУС УГЛА DВС