Найдите площадь треугольника, изображённого на рисунке.
Обозначим ключевые точки как показано на рисунке.
Проверим, является ли BD
высотой данного треугольника. Если является, то треугольник ABD -
прямоугольный и к нему применима
теорема Пифагора:
AB2=AD2+BD2
1702=262+1682
28900=676+28224
28900=28900
Равенство выполняется.
Площадь треугольника равна произведению
высоты на половину стороны, к которой проведена
высота.
SABC=BD*AC/2=BD*(AD+DC)/2=168*(26+95)/2=84*121=10164
Ответ: SABC=10164
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC AB=BC=53, AC=56. Найдите длину медианы BM.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=21, BF=20.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 8.
Лестница соединяет точки A и B. Высота каждой ступени равна 10,5 см, а длина – 36 см. Расстояние между точками A и B составляет 15 м. Найдите высоту, на которую поднимается лестница (в метрах).
Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.


Комментарии: