Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.
Рассмотрим каждое утверждение.
1) "
Биссектриса
равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию", это утверждение верно, по
свойству равнобедренного треугольника - такая
биссектриса является и медианой, и высотой, следовательно, она перпендикулярна основанию.
2) "Диагонали
ромба точкой пересечения делятся пополам", это утверждение верно, т.к. это утверждение является
свойством параллелограмма, а
ромб - это тоже
параллелограмм.
3) "Из двух хорд окружности больше та, середина которой находится дальше от центра окружности", это утверждение неверно. Диаметр - это наибольшая
хорда, следовательно, чем центр хорды ближе к центру окружности, тем хорда больше.
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?
Две касающиеся внешним образом в точке K окружности, радиусы которых равны 39 и 42, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.
В трапеции ABCD AB=CD, ∠BDA=67° и ∠BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Катеты прямоугольного треугольника равны 3√
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 4, тангенс угла BAC равен 0,75. Найдите радиус вписанной окружности треугольника ABC.
Комментарии: