ОГЭ, Математика. Геометрия: Задача №BA1943 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №BA1943

Задача №962 из 1087
Условие задачи:

Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе?

Решение задачи:

Обозначим как "х" процентное содержание кислоты в первом растворе.
Обозначим как "y" процентное содержание кислоты во втором растворе.
Напомним, что 1 процент (%) от числа - это 0,01 от этого числа.
Получаем уравнение из условия 1 (Если их слить вместе, то получим раствор, содержащий 55% кислоты):
10x+16y=(10+16)*0,55
10x+16y=26*0,55
10x+16y=14,3
Получаем уравнение из условия 2 (Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты), для удобства возьмем по одному кг каждого раствора:
1*x+1*y=(1+1)*0,61
x+y=2*0,61
x+y=1,22
Получили систему уравнений:

Умножим второе уравнение на 10:


А теперь, чтобы избавиться от "х", вычтем из первого уравнения второе:
(10x+16y)-(10x+10y)=14,3-12,2
10x+16y-10x-10y=2,1
6y=2,1
y=0,35 - это концентрация кислоты во втором растворе.
Подставим полученное значение "y" во второе уравнение и найдем "x":
x+0,35=1,22
x=1,22-0,35=0,87
Найдем, сколько килограммов кислоты содержится в первом растворе:
10*0,87=8,7
Ответ: 8,7

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0178E9

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 26:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 7.



Задача №4D5C0E

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №F609D2

Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC=24, BD=28, AB=6. Найдите DO.



Задача №088A84

Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.



Задача №2ED62B

ABCDEFGHI – правильный девятиугольник. Найдите угол ADC. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика