ОГЭ, Математика. Геометрия: Задача №D4D0BC | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Дочертим отрезки как показано на рисунке.
DE=AF, т.к. это высоты трапеции.
∠DCE=180°-∠BCD=180°-120°=60° (т.к. это смежные углы).
sin(∠DCE)=ED/CD (по определению)
sin60°=ED/CD (sin60°=√3/2 по таблице)
3/2=ED/34
ED=34√3/2
sin(∠ABF)=AF/AB (по определению)
sin45°=ED/AB
AB=ED/sin45° (sin45°=√2/2 по таблице)


Ответ: 17√6

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №22AB8C

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.



Задача №F83EF7

Найдите площадь треугольника, изображённого на рисунке.



Задача №5E3594

Центральный угол AOB, равный 60°, опирается на хорду АВ длиной 4. Найдите радиус окружности.



Задача №2360D1

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=36°. Найдите угол NMB. Ответ дайте в градусах.



Задача №2773EA

В треугольнике ABC DE – средняя линия. Площадь треугольника CDE равна 35. Найдите площадь треугольника ABC.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика