ОГЭ, Математика. Геометрия: Задача №D07B18 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №D07B18

Задача №892 из 1087
Условие задачи:

Радиус окружности, вписанной в равносторонний треугольник, равен 23. Найдите длину стороны этого треугольника.

Решение задачи:

По свойству равностороннего треугольника:

Тогда:
6r=a3
a=6r/3=(6*23)/3=123/3=12
Ответ: 12

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0178E9

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 26:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 7.



Задача №C1B4DE

Точка О – центр окружности, /BAC=70° (см. рисунок). Найдите величину угла BOC (в градусах).



Задача №67E364

В треугольнике ABC известно, что AC=14, BM — медиана, BM=10. Найдите AM.



Задача №E29AAA

Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=42. Найдите MN.



Задача №FF0BCC

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика