Радиус окружности, вписанной в равносторонний треугольник, равен 2√
По
свойству равностороннего треугольника:
Тогда:
6r=a√
a=6r/√
Ответ: 12
Поделитесь решением
Присоединяйтесь к нам...
Четырёхугольник ABCD со сторонами AB=19 и CD=22 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
Основание AC равнобедренного треугольника ABC равно 8. Окружность радиуса 5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
На клетчатой бумаге с размером клетки 1x1 изображён ромб. Найдите площадь этого ромба.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=8, CK=13.
Найдите тангенс угла AOB.
Комментарии: