На окружности отмечены точки A и B так, что меньшая дуга AB равна 92°. Прямая BC касается окружности
в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Проведем отрезки из центра окружности к точкам А и В, как показано на рисунке.
∠AOB - центральный, следовательно равен градусной мере дуги, т.е. ∠AOB=92°.
Рассмотрим треугольник OAB:
OA=OB, так как это радиусы окружности.
Получается, что данный треугольник
равнобедренный.
Следовательно, ∠OAB=∠OBA=x (по
свойству равнобедренного треугольника)
По
теореме о сумме углов треугольника:
180°=∠AOB+∠OAB+∠OBA
180°=92°+x+x
2x=88°
x=44°
∠OBC=90° (по
свойству касательной).
∠ABC=∠OBC-∠OBA
∠ABC=90°-44°
∠ABC=46°
Ответ: 46
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 1.
В равнобедренной трапеции основания равны 2 и 6, а один из углов между боковой стороной и основанием равен
45°. Найдите площадь трапеции.
На окружности отмечены точки A и B так, что меньшая дуга AB равна 92°. Прямая BC касается окружности
в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.
Укажите номера верных утверждений.
1) Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая высота равнобедренного треугольника является его биссектрисой.
Комментарии:
(2019-10-09 20:18:09) Администратор: meltdown, как?
(2019-10-09 20:09:23) meltdown: помогите пожалуйста
(2017-05-14 18:59:05) Администратор: Людмила, в математике утверждений не бывает. Бывают определения, теоремы и аксиомы. Поэтому при решении или надо ссылаться на определения, теоремы и аксиомы, или доказывать.
(2017-05-13 18:50:59) Людмила: Можно просто воспользоваться утверждением, что угол между хордой и касательной равен половине дуги, заключенной внутри него. Доказывать это не обязательно