Синус острого угла A треугольника ABC равен √
Вариант №1
В условии задачи про треугольник ничего не сказано. Но мы можем нарисовать такой прямоугольный треугольник, чтобы и у него
синус острого угла был равен √
Чтобы sinA был равен √
По тоереме Пифагора:
AB2=CB2+AC2
52=(√
25=21+AC2
AC2=4
AC=2
Тогда, по определению
косинуса:
cosA=AC/AB=2/5=0,4
Ответ: 0,4
Вариант №2
Воспользуется
основной тригонометрической формулой:
sin2A+cos2A=1
(√
21/25+cos2A=1
cos2A=1-21/25=1-0,84=0,16
cosA=0,4
Ответ: 0,4
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь трапеции, изображённой на рисунке.
Четырёхугольник ABCD описан около окружности, AB=9, BC=13, CD=18. Найдите AD.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 4, тангенс угла BAC равен 0,75. Найдите радиус вписанной окружности треугольника ABC.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?
Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
Комментарии: