ОГЭ, Математика. Геометрия: Задача №37BCA1 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №37BCA1

Задача №860 из 1087
Условие задачи:

Тангенс острого угла прямоугольной трапеции равен 2/9. Найдите её большее основание, если меньшее основание равно высоте и равно 54.

Решение задачи:

Введем обозначения ключевых точек и проведем высоту как показано на рисунке.
ABEC - квадрат, так как все углы прямые и все стороны равны.
Т.е. BE=EC=AB=54
tgα=BE/ED=2/9 (по определению).
54/ED=2/9
ED=54*9/2=27*9=243
CD=CE+ED=54+243=297
Ответ: 297

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D60018

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=9, AC=18, MN=8. Найдите AM.



Задача №2D8B04

В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.



Задача №035475

В трапеции ABCD основания AD и BC равны соответственно 48 и 3, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=3.



Задача №82E915

Радиус окружности, вписанной в равнобедренную трапецию, равен 20. Найдите высоту этой трапеции.



Задача №0C3D58

Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=54° и ∠ACB=104°. Найдите угол DCB. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика