Прямая y=2x+b касается окружности x2+y2=5 в точке с положительной абсциссой. Определите координаты точки касания.
Чтобы определить точку касания двух графиков, необходимо решить систему, составленную их функций этих графиков:

Подставим первое уравнение во второе:
x2+(2x+b)2=5
Раскроем скобку при помощи формулы
квадрат суммы:
x2+(2x)2+2*2x*b+b2=5
x2+4x2+4xb+b2=5
5x2+4xb+b2-5=0
Решим это квадратное уравнение через дискриминант:
D=(4b)2-4*5*(b2-5)=16b2-20(b2-5)=16b2-20b2+100=-4b2+100
В условии сказано, что прямая КАСАЕТСЯ окружности, следовательно имеет только одну общую точку, следовательно, решение системы должно быть только одно, т.е. решение
квадратного уравнения тоже должно быть одно. Для этого
дискриминант должен быть равен нулю:
-4b2+100=0
-4b2=-100 |:(-4)
b2=25
b1=5
b2=-5
Мы получили такие b, при которых прямая y=2x+b будет иметь только одну общую точку (т.е. касаться) с окружностью x2+y2=5.
Продолжим решать квадратное уравнение для каждого b:
1) b=5
Тогда наше уравнение имеет вид:
5x2+4x*5+52-5=0
5x2+20x+25-5=0
5x2+20x+20=0 |:5
x2+4x+4=0
Дискриминант равен нулю, мы его сами приравняли к нулю. Найдем x:
x=-4/(2*1)=-4/2=-2 - это абцисса точки пересечения, она отрицательна, поэтому не подходит по условию задачи.
2) b=-5
Тогда наше уравнение имеет вид:
5x2+4x(-5)+(-5)2-5=0
5x2-20x+25-5=0
5x2-20x+20=0 |:5
x2-4x+4=0
x=-(-4)/2=4/2=2 - эта абцисса подходит под условие.
Подставим эти значения х и b в уравнение прямой:
y=2x+b
y=2*2-5
y=-1 - это ордината точки пересечения.
Ответ: (2;-1)
Поделитесь решением
Присоединяйтесь к нам...
Боковые стороны AB и CD трапеции ABCD равны соответственно 40 и 41, а основание BC равно 16. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=108°. Ответ дайте в градусах.
В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=169°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.
Сторона равностороннего треугольника равна 18√3. Найдите радиус окружности, описанной около этого треугольника.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади четырехугольника KPCM к площади треугольника ABC.
Комментарии: