Точка О – центр окружности, /ACB=32° (см. рисунок). Найдите величину угла AOB (в градусах).
По условию /ACB=32°, этот угол является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 32°*2=64°.
/AOB является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /AOB=64°.
Ответ: /AOB=64°.
Поделитесь решением
Присоединяйтесь к нам...
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:7:8. Найдите радиус окружности, если меньшая из сторон равна 20.
Точка О – центр окружности, /ACB=65° (см. рисунок). Найдите величину угла AOB (в градусах).
Площадь прямоугольного треугольника равна 968√
В треугольнике ABC угол C равен 90°, sinA=4/5, AC=9. Найдите AB.
Прямая, параллельная основаниям трапеции
ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
Комментарии: