На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=41°. Найдите угол NMB. Ответ дайте в градусах.
Дуга ANB равна дуге AMB, и обе равны 180°, т.к. AB - диаметр.
∠NBA является
вписанным в окружность углом, следовательно (по
теореме о вписанном угле) дуга AN равна 41°*2=82°.
Тогда дуга NB равна 180°-82°=98°
∠NMB - тоже является
вписанным в окружность и опирается на дугу NB, следовательно он равен 98°/2=49°
Ответ: 49
Поделитесь решением
Присоединяйтесь к нам...
Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка K — середина стороны AB. Докажите, что DK — биссектриса угла ADC.
Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=12, CM=18. Найдите AO.
В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём BF = DM, BE = DK. Докажите, что EFKM — параллелограмм.
Боковые стороны AB и CD трапеции ABCD равны соответственно 40 и 41, а основание BC равно 16. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая проходит 11°?
Комментарии: