От столба высотой 12 м к дому натянут провод, который крепится на высоте 4 м от земли (см. рисунок). Расстояние от дома до столба 15 м. Вычислите длину провода. Ответ дайте в метрах.
Изобразим рисунок схематично. Проведем отрезок СЕ, параллельный AD.
AECD -
прямоугольник, т.к. все углы прямые. Следовательно, СЕ=AD=15 и EA=CD=4.
Треугольник BCE прямоугольный, тогда
по
теореме Пифагора:
BC2=CE2+EB2
BC2=CE2+(BA-EA)2
BC2=152+(12-4)2
BC2=225+64
BC2=289
BC=17.
Ответ: 17
Поделитесь решением
Присоединяйтесь к нам...
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.
Диагональ прямоугольника образует угол 75° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
Боковая сторона равнобедренного треугольника равна 10, а основание равно 12. Найдите площадь этого треугольника.
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=64°. Ответ дайте в градусах.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=9, AC=18, MN=8. Найдите AM.
Комментарии: