Отрезок AB=32 касается окружности радиуса 24 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
Отрезок AB перпендикулярен OB (по
свойству касательной).
Следовательно, треугольник ABO
прямоугольный.
Тогда можно применить
теорему Пифагора:
AO2=AB2+OB2
AO2=322+242
AO2=1024+576
AO2=1600
AO=40
AO=AD+OD
OD - радиус окружности, следовательно OD=24.
40=AD+24
AD=16
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=7, DK=14, BC=10. Найдите AD.
В треугольнике ABC угол C равен 90°, BC=5, AC=2.
Найдите tgB.
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=177°. Найдите величину угла BOC. Ответ дайте в градусах.
В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=26.
Комментарии: