В угол C величиной 83° вписана окружность, которая касается сторон угла в точках A и B. Найдите угол AOB. Ответ дайте в градусах.
Рассмотрим четырехугольник AOBC.
∠C=83° (по условию задачи).
∠CAO=∠CBO=90° (по
первому свойству касательной).
Сумма любого n-угольника равна (n-2)180°, значит сумма углов четырехугольника равна:
(4-2)180°=360°
Т.е. ∠C+∠CAO+∠CBO+∠AOB=360°
83°+90°+90°+∠AOB=360°
∠AOB=360°-83°-90°-90°
∠AOB=97°
Ответ: 97
Поделитесь решением
Присоединяйтесь к нам...
Основание AC равнобедренного треугольника ABC равно 8. Окружность радиуса 5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Найдите площадь параллелограмма, изображённого на рисунке.
Касательные к окружности с центром O в точках A и B пересекаются под углом 76°. Найдите угол ABO. Ответ дайте в градусах.
Катеты прямоугольного треугольника равны 2√
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=43° и ∠OAB=13°. Найдите угол BCO. Ответ дайте в градусах.
Комментарии:
(2021-10-27 18:20:41) Лена : центр окружности описанной треуг АВС лежит на стороне АВ Найти Угол АВС если угол ВАС равен 30