ОГЭ, Математика. Геометрия: Задача №FFBC49 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №FFBC49

Задача №739 из 1087
Условие задачи:

Площадь прямоугольного треугольника равна 183/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.

Решение задачи:

Обозначим:
a - искомый катет
b - второй катет
c - гипотенуза
sin60°=3/2 ( табличное значение)
sin60°=a/c=3/2 (по определению синуса)
c=2a/3
По теореме Пифагора:
a2+b2=c2
a2+b2=(2a/3)2
a2+b2=4a2/3
3(a2+b2)=4a2
3a2+3b2=4a2
3b2=a2
b2=a2/3
b=a/3
Из условия:
Sтреугольника=ab/2=183/3
a*(a/3)/2=183/3
a2/3=2*183/3
a2=3*363/3
a2=36(3)2/3
a2=36
a=6
Ответ: 6

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №274F75

Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали любого прямоугольника делят его на 4 равных треугольника.
3) Для точки, лежащей внутри круга, расстояние до центра круга меньше его радиуса.



Задача №A002C2

В равнобедренной трапеции основания равны 3 и 5, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.



Задача №45DD3F

В треугольнике ABC угол C равен 133°. Найдите внешний угол при вершине C. Ответ дайте в градусах.



Задача №6B8714

В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что треугольники BEF и DFE равны.



Задача №4BFABA

В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BOC.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика