Найдите площадь трапеции, диагонали которой равны 15 и 7, а средняя линия равна 10.
Площадь
трапеции равна произведению высоты на полусумму оснований:
SABCD=h*(BC+AD)/2=h*l, где l -
средняя линия трапеции l=(BC+AD)/2. Следовательно, нам надо найти высоту h.
Продлим основание AD и проведем отрезок из вершины C, параллельный BD до пересечения с продленным основанием в точке M (как показано на рисунке).
В четырехугольнике BCMD сторона CM||BD (мы сами так провели СМ) и DM||BC (по определению
трапеции).
Следовательно, четырехугольник BCMD -
параллелограмм.
Тогда, по
свойству параллелограмма, DM=BC.
AM=AD+DM=AD+BC=2l=2*10=20
Рассмотрим треугольник ACM.
Мы знаем длины всех его сторон, следовательно можем найти площадь через полупериметр:
Полупериметр p=(AC+CM+AM)/2=(AC+BD+AM)/2=(15+7+20)/2=21
SACM=√
По другой формуле SACM=h*AM/2=42
h=2*42/AM=2*42/20=4,2
Теперь мы можем вычислить площадь трапеции:
SABCD=h*l=4,2*10=42
Ответ: 42
Поделитесь решением
Присоединяйтесь к нам...
Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит меньший угол.
2) Любой квадрат можно вписать в окружность.
3) Площадь трапеции равна произведению средней линии на высоту.
Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.
Четырёхугольник ABCD со сторонами AB=19 и CD=28 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠
AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
Сторона ромба равна 8, а расстояние от точки пересечения диагоналей ромба до неё равно 2. Найдите площадь этого ромба.
Сторона равностороннего треугольника равна 2√
Комментарии:
(2019-04-23 17:16:38) Ваня: Изи