Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: Анна
Учиться, учиться и еще раз учиться лучше, чем работать, работать и работать...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №638 из 889. Номер задачи на WWW.FIPI.RU - 2EB3D5


В выпуклом четырёхугольнике ABCD углы BCA и BDA равны. Докажите, что углы ABD и ACD также равны.

Решение задачи:

Вариант 1
∠BCA и ∠BDA опираются на отрез AB и равны друг другу.
Значит мы можем провести окружность через точки AB и вершины этих углов. Эти углы окажутся вписанными в окружность, опирающимися на одну дугу.
Получится, что мы описали окружность вокруг четырехугольника.
Заметим, что углы ABD и ACD тоже являются вписанными и опирающимися на одну и ту же дугу, т.е., используя теорему о вписанном угле, получаем, что они равны друг другу .

ч.т.д.

Вариант 2
Рассмотрим треугольники OBC и OAD.
∠BOC=∠AOD (так как они вертикальные).
∠BCA=∠BDA (по условию).
Тогда, по первому признаку подобия треугольников, данные треугольники подобны.
Следовательно, по определению:
OB/OA=OC/OD
Рассмотрим треугольники ABO и DCO.
∠AOB=∠COD (так как они вертикальные).
А так как OB/OA=OC/OD, то получается что:
OB=AO*OC/OD
OB/OC=AO/OD, следовательно по второму признаку подобия, эти треугольники тоже подобны.
Тогда, по определению, соответствующие углы этих треугольников равны, т.е. углы ABD и ACD равны.
ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:


(2015-04-30 18:53:49) Саша: А разве можно просто так взять и описать окружность около трапеции. Ведь чтобы описать нужно равнобокую трапецию?
(2015-04-30 20:46:35) Администратор: Саша, ни в условии, ни в решении нет ни одного слова про трапецию.
(2016-05-29 11:52:54) Елена: Вопрос по 2 варианту решения. Как углы BOC и AOD могут быть вертикальными, если мы не знаем, что ВС параллельна AD?
(2016-05-29 12:27:41) Администратор: Елена, Вертикальные углы - это углы образованные двумя пересеченными прямыми и находящиеся напротив друг друга. Параллельные прямые тут вообще ни при чем.
(2016-12-16 14:04:00) Владислав: Да, я тоже не понимаю кто сказал что мы можем описать окружность, надо сначала доказать что сумма противоположных углов 180.
(2016-12-17 10:33:42) Администратор: Владислав, тут тонкий момент. Пусть АВ - это хорда какой-то окружности (мы пока не знаем как она проходит). Таких окружностей бесконечно много. Выберем такую окружность, для которой угол BCA будет вписанным.Через точки A, B и C всегда можно провести окружность. А так как угол BDA равен BCA и опирается на ту жу дугу, то угол BDA тоже окажется вписанным в окружность. Таким образом получится, что окружность описана вогруг четырехугольника.
(2016-12-19 19:50:21) Инна: Во втором варианте отношения сторон ОВ и ОА, а также ОС и ОД разве можно назвать отношениями пропорциональных сторон треугольников АВО и ВСО? Мы же видим, что ОВ и ОА - стороны одного треуг.АВО, так же и стороны ОС и ОД - стороны одного треуг.ВСО? Каким образом приведённое в задаче отношение доказывает пропорциональность сторон треугольников АВО и ВСО?
(2016-12-20 11:41:03) Администратор: Инна, по первому признаку подобия треугольников. "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны". А уже из доказанного подобия мы можем утверждать о пропорциональности сторон.
Нажимайте на ссылки в решении, тогда вы увидите материалы на которые я ссылаюсь.
(2016-12-20 16:27:01) Инна: Речь идёт о втором признаке, когда доказывается подобие второй пары треугольников на основании полученной пропорции.И тут и не получается того, что стороны пропорциональны.
(2016-12-20 16:34:00) Инна: То есть я пишу о доказательстве подобия треугольников АВО и ДСО, где используется второй признак подобия. Из полученной пропорции нельзя сделать вывод, что стороны треугольников АВО и ДСО пропорциональны.
(2016-12-20 17:00:17) Администратор: Инна, теперь я Вас понял. Я добавил в решение пару строк, чтобы все стало правильно и понятно. Я, видимо, зря опустил эти вычисления. Спасибо, что обратили на это внимание. Теперь все хорошо?
(2016-12-21 18:50:49) Инна: Да. Класс! Теперь понятно, что методом преобразования из первой пропорции получается вторая. Большое спасибо.
(2017-03-03 17:13:03) Генрих: Скажите пожалуйста, как доказать, что если два угла, в данном случае BDA BCA, опираются на одну дугу и равны, то они вписаны в одну и ту же окружность? По-моему это не очевидно.
(2017-03-06 22:58:18) Администратор: Генрих, можно доказать от обратного. Например, эти два угла являются вписанными для разных окружностей. Но при этом градусные меры дуг совпадают, так как вписанные углы равны. Следовательно, и радиусы у этих окружностей равны. Таких окружностей можно провести только две, и только так, чтобы ценры окружностей располагались по разные стороны от нашей хорды. А в нашем случае центры явно лежат по одну сторону. Получается, что окружности совпадают, т.е. углы принажлежат одной окружности.
(2017-03-07 17:42:44) Генрих: Да, все грамотно) спасибо большое)
(2017-03-09 20:00:07) Администратор: Генрих, пожалуйста, обращайтесь. Кстати, Ваш вопрос очень правильный.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 889)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2017. Все права защищены. Яндекс.Метрика