Точка О – центр окружности, /ACB=24° (см. рисунок). Найдите величину угла AOB (в градусах).
По условию /ACB=24°, этот угол является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 24°*2=48°.
/AOB является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /AOB=48°.
Ответ: /AOB=48°.
Поделитесь решением
Присоединяйтесь к нам...
На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=32, MD=8, H — точка пересечения высот треугольника ABC. Найдите AH.
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=24. Найдите MN.
Стороны AC, AB, BC треугольника ABC равны 2√
Центральный угол AOB опирается на хорду АВ длиной 6. При этом угол ОАВ равен 60°. Найдите радиус окружности.
В прямоугольном треугольнике ABC катет AC=25, а высота CH, опущенная на гипотенузу, равна 10√
Комментарии: