Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит больший угол.
2) Любой прямоугольник можно вписать в окружность.
3) Площадь треугольника меньше произведения двух его сторон.
Рассмотрим каждое утверждение:
1) "Против большей стороны треугольника лежит больший угол" - это утверждение верно, по
теореме о соотношениях между сторонами и углами треугольника.
2) "Любой прямоугольник можно вписать в окружность" - это утверждение верно, так как, чтобы четырехугольник можно было вписать в окружность, должно выполняться условие - сумма противолежащих углов четырехугольника должна равняться 180°. Для Прямоугольника это условие выполняется.
3) "Площадь треугольника меньше произведения двух его сторон". Площадь треугольника можно вычислить по формуле Sтреугольника=1/2*a*b*sinC, где С - угол между сторонами a и b. Т.к. значение синуса не может быть больше единицы, получается, что a*b всегда больше 1/2*a*b*sinC. Поэтому это утверждение верно.
Ответ: 1), 2), 3)
Поделитесь решением
Присоединяйтесь к нам...
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 26:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 7.
На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.
В треугольнике ABC известно, что AB=3, BC=8, AC=7. Найдите cos∠ABC.
В ромбе ABCD угол ABC равен 146°. Найдите угол ACD. Ответ дайте в градусах.
В параллелограмме ABCD точка K — середина стороны CD. Известно, что KA=KB. Докажите, что данный параллелограмм — прямоугольник.
Комментарии: