ОГЭ, Математика. Геометрия: Задача №2921C7 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №2921C7

Задача №513 из 1084
Условие задачи:

Площадь прямоугольного треугольника равна 24503/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.

Решение задачи:

Площадь прямоугольного треугольника равна половине произведения катетов:
S=AC*BC/2=24503/3
Пусть 30-и градусам равен угол BAC.
Тангенс BAC:
td∠BAC=tg30°=BC/AC=3/3 (по таблице).
BC=AC3/3
S=AC*BC/2=24503/3
AC*BC=49003/3
AC*AC3/3=49003/3
AC2=4900
AC=70
Ответ: 70

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №7ABB40

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.



Задача №F6FBB5

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №34FF9A

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 9 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №3FA31E

В треугольнике ABC угол C равен 90°, AC=10, tgA=0,1. Найдите BC.



Задача №EB43A2

На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика