Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 1°. Ответ дайте в градусах.
∠BCA=∠DAC=1° (т.к. это
накрест-лежащие углы)
А так как AC -
биссектриса, то ∠BAC=∠DAC=1°.
∠A=∠BAC+∠DAC=1°+1°=2°
Ответ: 2
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=16, BF=12.
Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=44, BC=24, CF:DF=3:1.
В треугольнике ABC известно, что AB=8, BC=10, AC=12. Найдите cos∠ABC.
Найдите площадь треугольника, изображённого на рисунке.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=11 и MB=16. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии: