Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=177°. Найдите величину угла BOC. Ответ дайте в градусах.
Центр
описанной окружности располагается на пересечении
серединных перпендикуляров треугольника. Так как треугольник
равнобедренный, то
биссектриса и
серединный перпендикуляр, проведенные к основанию, совпадают.
Следовательно, BO -
биссектриса угла ABC.
Тогда: ∠CBO=∠ABC/2=177°/2=88,5°
Треугольник OBC -
равнобедренный, так как OB и OC - радиусы окружности и следовательно равны.
По
свойству равнобедренного треугольника:
∠CBO=∠BCO=88,5°
По
теореме о сумме углов треугольника:
180°=∠CBO+∠BCO+∠BOC
180°=88,5°+88,5°+∠BOC
∠BOC=3°
Ответ: 3
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме KLMN точка E — середина стороны LM. Известно, что EK=EN. Докажите, что данный параллелограмм — прямоугольник.
В окружности с центром в точке O проведены диаметры
AD и BC, угол OAB равен 70°. Найдите величину угла OCD.
В остроугольном треугольнике ABC проведена высота BH, ∠BAC=37°. Найдите угол ABH. Ответ дайте в градусах.
На клетчатой бумаге с размером клетки 1x1 изображён параллелограмм. Найдите его площадь.
Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна
140°.
Комментарии:
(2017-03-06 23:01:34) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-03-04 19:40:30) : На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA = 32°. Найдите угол NMB. Ответ дайте в градусах.