Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.
∠CAD является
вписанным углом и опирается на дугу CD.
∠CBD тоже
вписанный и тоже опирается на ту же дугу CD, следовательно:
∠CAD=∠CBD=60°
∠ABD=∠ABC-∠CBD=92°-60°=32°
Ответ: 32
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC DE – средняя линия. Площадь треугольника CDE равна 35. Найдите площадь треугольника ABC.
Лестницу длиной 3 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 1,8 м?
Радиус окружности, описанной около равностороннего треугольника, равен 10. Найдите высоту этого треугольника.
Какие из данных утверждений верны? Запишите их номера.
1) Любой параллелограмм можно вписать в окружность.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Точка пересечения двух окружностей равноудалена от центров этих окружностей.
Площадь параллелограмма ABCD равна 140. Точка E — середина стороны AB. Найдите площадь треугольника CBE.
Комментарии:
(2016-12-22 20:34:56) Администратор: Андрей, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2016-12-22 16:48:54) Андрей: четырехугольник BCDE вписан в окружность.расстояние между точками E и C равно 25, между D и C -7, между D и E -24. найти а) косинус угла CBD; б) BC, если косинус угла BCD=1/5