Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 26:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 7.
Пусть AD -
биссектриса, описанная в условии.
BC - сторона, равная 7.
Рассмотрим треугольник ADC.
Для этого треугольника CO -
биссектриса,
По
свойству биссектрисы:
AO/OD=AC/CD=26/1
AC=26*CD
Рассмотрим треугольник ABD.
Для этого треугольника BO -
биссектриса,
По
свойству биссектрисы:
AO/OD=AB/BD=26/1
AB=26*BD
Складываем полученные равенства:
AC+AB=26*CD+26*BD
AC+AB=26(CD+BD), CD+BD=BC=7
AC+AB=26*7
AC+AB=182
PABC=AC+AB+BC=182+7=189
Ответ: PABC=189
Поделитесь решением
Присоединяйтесь к нам...
Сторона квадрата равна 3√2. Найдите диагональ этого квадрата.
Основания BC и AD трапеции ABCD равны соответственно 4 и 64, BD=16. Докажите, что треугольники CBD и ADB подобны.
В параллелограмме KLMN точка E — середина стороны KN. Известно, что EL=EM. Докажите, что данный параллелограмм — прямоугольник.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=32.
Сторона ромба равна 38, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Комментарии: