В прямоугольном треугольнике
ABC катет AC=8, а высота CH, опущенная на гипотенузу, равна 2√
Рассмотрим треугольники ABC и ACH.
∠AHC=∠ACB (т.к. это прямые углы).
∠A - общий.
Следовательно, по
теореме о сумме углов треугольника ∠ACH=∠ABC
Тогда sin∠ACH=sin∠ABC.
Теперь рассмотрим треугольник ACH.
По
теореме Пифагора:
AC2=CH2+AH2
82=(2√
64=4*15+AH2
AH2=64-60
AH2=4
AH=2
sin∠ACH=AH/AC (по
определению)
sin∠ACH=2/8=1/4=0,25
Как было выведено выше:
sin∠ABC=sin∠ACH=0,25
Ответ: sin∠ABC=0,25
Поделитесь решением
Присоединяйтесь к нам...
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 25° и 30°. Найдите больший угол параллелограмма.
В треугольнике два угла равны 46° и 78°. Найдите его третий угол. Ответ дайте в градусах.
Стороны AC, AB, BC треугольника ABC равны 2√
Радиус окружности, описанной около квадрата, равен 36√2. Найдите длину стороны этого квадрата.
От столба к дому натянут провод длиной 13 м, который закреплён на стене дома на высоте 4 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 12 м.
Комментарии:
(2016-05-11 09:37:59) Администратор: Олеся, к сожалению, у меня нет такой информации.
(2016-05-11 09:36:57) Олеся: Ответьте пожалуйста, на экзамене эта задача под каким номером. Из второй части?
(2016-05-11 09:32:39) Олеся: Ответьте пожалуйста, на экзамене эта задача под каким номером. Из второй части?