В прямоугольном треугольнике
ABC катет AC=8, а высота CH, опущенная на гипотенузу, равна 2√
Рассмотрим треугольники ABC и ACH.
∠AHC=∠ACB (т.к. это прямые углы).
∠A - общий.
Следовательно, по
теореме о сумме углов треугольника ∠ACH=∠ABC
Тогда sin∠ACH=sin∠ABC.
Теперь рассмотрим треугольник ACH.
По
теореме Пифагора:
AC2=CH2+AH2
82=(2√
64=4*15+AH2
AH2=64-60
AH2=4
AH=2
sin∠ACH=AH/AC (по
определению)
sin∠ACH=2/8=1/4=0,25
Как было выведено выше:
sin∠ABC=sin∠ACH=0,25
Ответ: sin∠ABC=0,25
Поделитесь решением
Присоединяйтесь к нам...
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=13.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 20, а площадь равна 50√
Точка О – центр окружности, /BOC=50° (см. рисунок). Найдите величину угла BAC (в градусах).
От столба к дому натянут провод длиной 15 м, который закреплён на стене дома на высоте 3 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 12 м.
Комментарии:
(2016-05-11 09:37:59) Администратор: Олеся, к сожалению, у меня нет такой информации.
(2016-05-11 09:36:57) Олеся: Ответьте пожалуйста, на экзамене эта задача под каким номером. Из второй части?
(2016-05-11 09:32:39) Олеся: Ответьте пожалуйста, на экзамене эта задача под каким номером. Из второй части?