Юмор

Автор: Таська
Так выглядит современная программа обучения.
Решите задачу: летят по небу два верблюд...читать далее

Решение задачи:

Так как AB=CD, значит трапеция ABCD - равнобедренная.
Тогда по свойству равнобедренной трапеции ∠ABC=∠BCD=95° и ∠CDA=∠DAB.
Вспомнив, что сумма углов выпуклого n-угольника вычисляется по формуле (n-2)180°, получим, что сумма углов трапеции равна (4-2)180°=360°.
Тогда ∠ABC+∠BCD+∠CDA+∠DAB=360°
95°+95°+∠CDA+∠DAB=360°
∠CDA+∠DAB=170°
∠CDA=∠DAB=170°/2=85°
Рассмотрим треугольник ACD.
Так как AC=AD, то данный треугольник - равнобедренный.
Следовательно, по свойству равнобедренного треугольника ∠CDA=∠DCA=85°
∠BCA=∠BCD-∠DCA=95°-85°=10°
∠CAD=∠DCA=10° (т.к. они накрест-лежащие для параллельных прямых AD и BC).
Ответ: 10

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №1138AC

Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром описанной окружности треугольника является точка пересечения серединных перпендикуляров к его сторонам.

Задача №5AC6CD

Косинус острого угла A треугольника ABC равен . Найдите sinA.

Задача №239EF1

Периметр треугольника равен 54, одна из сторон равна 15, а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.

Задача №0F5583

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади четырехугольника KPCM к площади треугольника ABC.

Задача №2D9D28

Площадь прямоугольного треугольника равна 23/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика