Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

ОГЭ, Математика.
Геометрия: Задача №D2C92F

Задача №401 из 1068
Условие задачи:

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=64°. Найдите угол NMB. Ответ дайте в градусах.

Решение задачи:

Дуга ANB равна дуге AMB, и обе равны 180°, т.к. AB - диаметр.
/NBA является вписанным в окружность углом, следовательно (по теореме о вписанном угле) дуга AN равна 64°*2=128°.
Тогда дуга NB равна 180°-128°=52°
/NMB - тоже вписанный в окружность, следовательно он равен 52°/2=26°
Ответ: 26

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №C03A01

Длина хорды окружности равна 60, а расстояние от центра окружности до этой хорды равно 40. Найдите диаметр окружности.

Задача №656C84

Площадь прямоугольного треугольника равна 9683/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.

Задача №20702A

В треугольнике ABC угол C прямой, BC=8, sinA=0,4. Найдите AB.

Задача №0BB4A3

Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=6, AC=24.

Задача №EECCA2

Катеты прямоугольного треугольника равны 26 и 1. Найдите синус наименьшего угла этого треугольника.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика