Найдите угол АВС равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной CD углы, равные 20° и 100° соответственно.
AD||BC (по
определению трапеции). Тогда AC является секущей для этих параллельных отрезков.
/BCA=/CAD, т.к. они
внутренние накрест-лежащие.
Тогда /BCD=20°+100°=120°.
По
свойству
равнобедренной трапеции /ABC=/BCD=120°.
Ответ: /ABC=120°.
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов C и D параллелограмма ABCD пересекаются в точке K стороны AB. Докажите, что K — середина AB.
Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 15, а основание BC равно 3. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 25° и 30°. Найдите больший угол параллелограмма.
В треугольнике ABC угол C прямой, BC=8, cosB=0,8. Найдите AB.
Катеты прямоугольного треугольника равны 12 и 16. Найдите гипотенузу этого треугольника.
Комментарии: