Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 25° и 40° соответственно.
По свойству
равнобедренной трапеции - углы при основании равны. Тогда /CDA=/BAD=40°+25°=65°.
AD||BC (по
определению трапеции), тогда сторону AB можно рассматривать как секущую к этим параллельным прямым.
Следовательно, /DAB+/ABC=180° (т.к. эти углы
внутренние односторонние) => /ABC=180°-/DAB=180°-65°=115°.
/BCD=/DAB=115° (по
свойству равнобедренной трапеции).
Следовательно, это и есть бОльшие углы трапеции.
Ответ: больший угол трапеции = 115°.
Поделитесь решением
Присоединяйтесь к нам...
Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 44°, 71° и 65°.
В треугольнике ABC известно, что ∠BAC=64°, AD — биссектриса. Найдите угол BAD. Ответ дайте в градусах.
Углы при одном из оснований трапеции равны 48° и 42°, а отрезки, соединяющие середины противоположных сторон трапеции равны 6 и 3. Найдите основания трапеции.
Площадь равнобедренного треугольника равна 1600√
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=11 и MB=16. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии: