Найдите угол ABC равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной CD углы, равные 30° и 80° соответственно.
Угол ∠BCA=∠CAD, т.к. это
внутренние накрест-лежащие углы.
Следовательно, ∠BCD=80°+30°=110°.
По
свойству равнобедренной трапеции ∠BCD=∠ABC=110°.
Ответ: ∠ABC=110°
Поделитесь решением
Присоединяйтесь к нам...
На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.
В остроугольном треугольнике ABC проведена высота BH, ∠BAC=37°. Найдите угол ABH. Ответ дайте в градусах.
Радиус окружности, вписанной в равносторонний треугольник, равен 2√
Какие из данных утверждений верны? Запишите их номера.
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.
3) Площадь круга меньше квадрата длины его диаметра.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 3 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1,5 м?
Комментарии:
(2021-10-04 12:42:21) Администратор: Потому, что AB не параллельна CD.
(2021-09-30 09:52:25) : а почему угла BAC и ACD не являются накрест лежащими?