Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
По
определению тангенса: tgB=AC/CB=5/2=2,5.
Ответ: tgB=2,5.
Поделитесь решением
Присоединяйтесь к нам...
В прямоугольном треугольнике
ABC катет AC=8, а высота CH, опущенная на гипотенузу, равна 2√
Радиус окружности, вписанной в трапецию, равен 24. Найдите высоту этой трапеции.
Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 30° и 45° соответственно. Ответ дайте в градусах.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 30° и 120°, а CD=25.
Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Комментарии: