ОГЭ, Математика. Геометрия: Задача №52C267 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №52C267

Задача №237 из 1084
Условие задачи:

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.

Решение задачи:

По условию задачи AB=BC=CA (т.к. треугольник ABC - равносторонний). Значит AK=KC=CN=NB=BM=MA.
Тогда, MN - средняя линия треугольника ABC. Следовательно, MN=AK и MN||AK (по теореме о средней линии).
NK - тоже средняя линия, равна AM и параллельна AM.
Получается, что AM=MN=NK=KA, т.е. AMNK - ромб (по свойству ромба).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4FDF7C

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 39°. Найдите величину угла OMK. Ответ дайте в градусах.



Задача №857A3B

Косинус острого угла A треугольника ABC равен . Найдите sinA.



Задача №D136EB

Трапеция ABCD с основаниями AD и BC описана около окружности, AB=14, BC=8, CD=12. Найдите AD.



Задача №BE1FC6

На отрезке AB выбрана точка C так, что AC=75 и BC=10. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.



Задача №6AC1BC

Точка О – центр окружности, /ACB=24° (см. рисунок). Найдите величину угла AOB (в градусах).

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика